
// Security Assessment 08.14.2024 - 08.23.2024

Shinkai Protocol

Shinkai

S h i n ka i P r o t o c o l - S h i n ka i

Prepared by: HALBORN

Last Updated 03/19/2025

Date of Engagement: August 14th, 2024 - August 23rd, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

8

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

7

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Hardcoded limiter based on current number of blocks per year
7.2 Missing visibility modifier for the available namespaces
7.3 Lack of storage gap in upgradeable contract
7.4 Use of ownableupgradeable library with single-step ownership transfer
7.5 Consider using named mappings
7.6 Use of unlicensed smart contracts
7.7 Redundant reward accrual
7.8 Unlocked pragma compilers

8. Automated Testing

0%

1 . I n t r o d u c t i o n

The Shinkai team engaged Halborn to conduct a security assessment on their smart contracts beginning on 2024-08-14 and
ending on 2024-08-23. The security assessment was scoped to the smart contracts provided in the GitHub repositories:

https://github.com/dcSpark/shinkai-contracts

Commit hashes and further details can be found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

Halborn was provided one week and two days for the engagement and assigned one full-time security engineer to check the
security of the smart contract. The security engineer is a blockchain and smart-contract security expert with advanced
penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

 Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified several security concerns that should be addressed by the Shinkai team.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of the smart contract assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help enhance coverage of
smart contracts and can quickly identify items that do not follow security best practices. The following phases and associated
tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope that could led to arithmetic

related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Slither).
Local or public testnet deployment (Foundry , Remix IDE).

https://github.com/dcSpark/shinkai-contracts

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity Coefficient. This
system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by which
vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors: Reversibility and Scope.
These capture the impact of the vulnerability on the environment as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest security risk. This
provides an objective and accurate rating of the severity of security vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to address the most
critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single transaction on the
relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Includes but is not
limited to macro situation, available third-party liquidity and regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

M E

E

E = m ∏ e

Measures the impact to the confidentiality of the information resources managed by the contract due to a successfully
exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity
of data stored and/or processed on-chain. Integrity impact directly affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. This
metric refers to smart contract features and functionality, not state. Availability impact directly affecting Deposit or Yield is
excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts, assume the
contract private key is available.

M I

I

I = max(m) +I

4
m − max(m)∑ I I

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: shinkai-contracts

(b) Assessed Commit ID: 52a83ce

(c) Items in scope:

src/RegistryControlled.sol
src/ShinkaiNft.sol
src/ShinkaiToken.sol
src/ShinkaiRegistry.sol
src/ShinkaiNftInterface.sol
src/ShinkaiRegistryInterface.sol
src/ShinkaiTokenInterface.sol
src/StringUtils.sol
src/UintLib.sol

Out-of-Scope: Third party dependencies and economic attacks.

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

7

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-01 - HARDCODED LIMITER BASED ON CURRENT NUMBER OF BLOCKS
PER YEAR

LOW NOT SOLVED

HAL-02 - MISSING VISIBILITY MODIFIER FOR THE AVAILABLE
NAMESPACES

INFORMATIONAL NOT SOLVED

HAL-03 - LACK OF STORAGE GAP IN UPGRADEABLE CONTRACT INFORMATIONAL NOT SOLVED

HAL-04 - USE OF OWNABLEUPGRADEABLE LIBRARY WITH SINGLE-STEP
OWNERSHIP TRANSFER

INFORMATIONAL NOT SOLVED

HAL-05 - CONSIDER USING NAMED MAPPINGS INFORMATIONAL NOT SOLVED

https://github.com/dcSpark/shinkai-contracts

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-06 - USE OF UNLICENSED SMART CONTRACTS INFORMATIONAL NOT SOLVED

HAL-07 - REDUNDANT REWARD ACCRUAL INFORMATIONAL NOT SOLVED

HAL-08 - UNLOCKED PRAGMA COMPILERS INFORMATIONAL NOT SOLVED

7. F I N D I N G S & T EC H D E TA I L S

7.1 (H A L - 0 1) H A R D C O D E D L I M I T E R BAS E D O N C U R R E N T N U M B E R O F

B LO C KS P E R Y E A R

// LOW

Description
The baseRewardsRateMaxMantissa is set in the ShinkaiRegistry contract as a constant, calculated based on a fixed assumption
about the number of blocks per year. Due to its immutability, this value is hardcoded into the contract's bytecode and cannot
be altered without implementation upgrade. However, as the block time can change over time due to network adjustments or
protocol upgrades, relying on this hardcoded constant can lead to inaccuracies.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation
Consider implementing a function allowing to dynamically adjust the baseRewardsRateMaxMantissa variable.

References
["https://github.com/dcSpark/shinkai-contracts/blob/52a83ce548eac47022b61f7aed23bfaa3e640c7d/src/ShinkaiRegistry.so
l#L15"]

 uint256uint256 publicpublic constantconstant baseRewardsRateMaxMantissa baseRewardsRateMaxMantissa == 190258751902190258751902;; // 50% inflation yearly (0.5e18 / blocksInYear)// 50% inflation yearly (0.5e18 / blocksInYear)1515

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U

7. 2 (H A L - 0 2) M I S S I N G V I S I B I L I T Y M O D I F I E R FO R T H E AVA I L A B L E

N A M ES PAC ES

// INFORMATIONAL

Description
The namespace mapping in the ShinkaiRegistry contract holds a string that is concatenated to the user's identity when they
claim a new identity. However, the mapping lacks a visibility modifier, which defaults its visibility to internal. This oversight
makes it difficult for users to check the available namespaces before selecting where to concatenate their identity. As a
result, users might unintentionally select the wrong namespace, leading to potential identity mismanagement.

BVSS

AO:A/AC:L/AX:M/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (1.7)

Recommendation
Consider adding a public visibility to the namespace mapping.

Remediation Comment
Consider adding a public visibility to the namespace mapping.

References
["https://github.com/dcSpark/shinkai-contracts/blob/52a83ce548eac47022b61f7aed23bfaa3e640c7d/src/ShinkaiRegistry.so
l#L33"]

7. 3 (H A L - 0 3) L AC K O F STO R AG E G A P I N U P G R A D E A B L E C O N T R AC T

// INFORMATIONAL

Description
The ShinkaiRegistry contracts is designed to be used with a UUPS proxy pattern. However, it lacks storage gaps. Storage gaps
are essential for ensuring that new state variables can be added in future upgrades without affecting the storage layout of
inheriting child contracts. Without it, any addition of new state variables in future contract versions can lead to storage
collisions.

BVSS

AO:A/AC:L/AX:H/C:N/I:N/A:M/D:N/Y:N/R:N/S:U (1.6)

Recommendation
Consider adding a storage gap as the last storage variable. Place the uint256[50] private __gap; variable at the end of
storage layout of ShinkaiRegistry contract.

 mappingmapping((uint256uint256 =>=> stringstring)) namespaces namespaces;;3333

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/C:N/I:N/A:M/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/C:N/I:N/A:M/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/C:N/I:N/A:M/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/C:N/I:N/A:M/D:N/Y:N/R:N/S:U

7. 4 (H A L - 0 4) U S E O F OWN A B L E U P G R A D E A B L E L I B R A RY WI T H S I N G L E-

ST E P OWN E RS H I P T R A N S F E R

// INFORMATIONAL

Description
The ownership of the contracts can be lost as the ShinkaiRegistry and ShinkaiControlled contracts inherited from the
OwnableUpgradeable/Ownable contract and their ownership can be transferred in a single-step process. The address the
ownership is changed to should be verified to be active or willing to act as the owner.

BVSS

AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U (1.1)

Recommendation
It is recommended to implement a two-step process where the owner nominates an account and the nominated account needs
to call an acceptOwnership function for the transfer of the ownership to fully succeed. This ensures the nominated EOA
account is a valid and active account. This can be achieved by using OpenZeppelin’s Ownable2StepUpgradeable contract
instead of the OwnableUpgradeable.

Remediation Comment
It is recommended to implement a two-step process where the owner nominates an account and the nominated account needs
to call an acceptOwnership function for the transfer of the ownership to fully succeed. This ensures the nominated EOA
account is a valid and active account. This can be achieved by using OpenZeppelin’s Ownable2StepUpgradeable contract
instead of the OwnableUpgradeable.

7. 5 (H A L - 0 5) C O N S I D E R U S I N G N A M E D M A P P I N G S

// INFORMATIONAL

Description
The project is using Solidity version greater than 0.8.18, which supports named mappings. Using named mappings can improve
the readability and maintainability of the code by making the purpose of each mapping clearer. This practice will enhance code
readability and make the purpose of each mapping more explicit.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Consider refactoring the mappings to use named arguments.
For example, on instead of declaring:
mapping(uint256 => string) public tokenIdToIdentity;

The mapping could be declared as:
mapping(uint256 tokenId => string identity) public tokenIdToIdentity;

Remediation Comment
Consider refactoring the mappings to use named arguments.
For example, on instead of declaring:
mapping(uint256 => string) public tokenIdToIdentity;

The mapping could be declared as:
mapping(uint256 tokenId => string identity) public tokenIdToIdentity;

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

7. 6 (H A L - 0 6) U S E O F U N L I C E N S E D S M A RT C O N T R AC TS

// INFORMATIONAL

Description
All the Shinkai smart contracts are marked as unlicensed, as indicated by the SPDX license identifier at the top of the files:

// SPDX-License-Identifier: UNLICENSED// SPDX-License-Identifier: UNLICENSED

Using unlicensed contract can lead to legal uncertainties and potential conflicts regarding the usage, modification and
distribution rights of the code. This may deter other developers from using or contributing to the project and could potentially
lead to legal issues in the future.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
It is recommended to choose and apply an appropriate open-source license to the smart contracts. Some popular options for
blockchain and smart contract projects include:
1. MIT License: A permissive license that allows for reuse with minimal restrictions.
2. GNU General Public License (GPL): A copyleft license that ensures derivative works are also open-source.
3. Apache License 2.0: A permissive license that provides an express grant of patent rights from contributors to users.

Remediation Comment
It is recommended to choose and apply an appropriate open-source license to the smart contracts. Some popular options for
blockchain and smart contract projects include:
1. MIT License: A permissive license that allows for reuse with minimal restrictions.
2. GNU General Public License (GPL): A copyleft license that ensures derivative works are also open-source.
3. Apache License 2.0: A permissive license that provides an express grant of patent rights from contributors to users.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

7.7 (H A L - 07) R E D U N DA N T R E WA R D AC C RUA L

// INFORMATIONAL

Description
The unclaimIdentity function implemented in ShinkaiRegistry calls claimStakingRewards method before proceeding with the
unclaim process to ensure the user's staking rewards are accrued. After accruing, it burn the related NFT.

The burn function in ShinkaiNft triggers the _beforeTokenTransfer method, which then calls back to the registry contract,
executing the claimRewards function.

The claimRewards function accumulates both staking and delegation rewards.

Since the claimRewards function already includes a call to claimStakingRewards, the initial call to claimStakingRewards in the
unclaimIdentity function is redundant and can be removed to optimize gas costs.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Consider removing the redundant invocation.

Remediation Comment
Consider removing the redundant invocation.

References
["https://github.com/dcSpark/shinkai-contracts/blob/52a83ce548eac47022b61f7aed23bfaa3e640c7d/src/ShinkaiRegistry.so
l#L427"]

 functionfunction unclaimIdentityunclaimIdentity((stringstring calldatacalldata identity identity)) publicpublic onlyOwnerIdentityonlyOwnerIdentity((identityidentity)) {{
 claimStakingRewardsclaimStakingRewards((identityidentity));;

 shinkaiNft shinkaiNft..burnburn((identityDataidentityData[[identityidentity]]..boundNftboundNft));;
 emitemit IdentityUnclaimIdentityUnclaim((identityidentity,, identityData identityData[[identityidentity]]..boundNftboundNft));;

 deletedelete tokenIdToIdentity tokenIdToIdentity[[identityDataidentityData[[identityidentity]]..boundNftboundNft]];;
 deletedelete identityData identityData[[identityidentity]]..boundNftboundNft;;
 _resetIdentityData_resetIdentityData((identityidentity));;

 shinToken shinToken..transfertransfer((msgmsg..sendersender,, identityData identityData[[identityidentity]]..stakedTokensstakedTokens));;
 identityData identityData[[identityidentity]]..stakedTokens stakedTokens == 00;;
 emitemit StakeUpdateStakeUpdate((identityidentity,, 00));;
 identityData identityData[[identityidentity]]..lastUpdated lastUpdated == block block..timestamptimestamp;;
 }}

426426
427427
428428
429429
430430
431431
432432
433433
434434
435435
436436
437437
438438
439439
440440

 functionfunction _beforeTokenTransfers_beforeTokenTransfers((addressaddress fromfrom,, addressaddress,, /*to*//*to*/ uint256uint256 startTokenId startTokenId,, uint256uint256 /*quantity*//*quantity*/))
 internalinternal
 override override
 {{
 ifif ((fromfrom ==== addressaddress((00)))) returnreturn;;
 stringstring memorymemory identity identity == registry registry..tokenIdToIdentitytokenIdToIdentity((startTokenIdstartTokenId));;
 registry registry..claimRewardsclaimRewards((identityidentity));;
 }}

6969
7070
7171
7272
7373
7474
7575
7676

 functionfunction claimRewardsclaimRewards((stringstring memorymemory identity identity)) publicpublic returnsreturns ((uint256uint256 tokensAccrued tokensAccrued)) {{
 tokensAccrued tokensAccrued +=+= claimStakingRewardsclaimStakingRewards((identityidentity));;
 tokensAccrued tokensAccrued +=+= claimDelegationRewardsclaimDelegationRewards((identityidentity));;
 }}

545545
546546
547547
548548

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

7. 8 (H A L - 0 8) U N LO C K E D P R AG M A C O M P I L E RS

// INFORMATIONAL

Description
The files in scope currently use floating pragma version ^0.8.20 , which means that the code can be compiled by any compiler
version that is greater than or equal to 0.8.0 , and less than 0.9.0 . It is recommended that contracts should be deployed with
the same compiler version and flags used during development and testing. Locking the pragma helps to ensure that contracts
do not accidentally get deployed using another pragma. For example, an outdated pragma version might introduce bugs that
affect the contract system negatively.
Additionally, using a newer compiler version that introduces default optimizations, including unchecked overflow for gas
efficiency, presents an opportunity for further optimization.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Lock the pragma version to the same version used during development and testing.

Remediation Comment
Lock the pragma version to the same version used during development and testing.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

8 . AU TO M AT E D T EST I N G

Static Analysis Report
Description
Halborn used automated testing techniques to enhance the coverage of certain areas of the scoped contracts. Among the
tools used was Slither, a Solidity static analysis framework. After Halborn verified all the contracts in the repository and was
able to compile them correctly into their abi and binary formats, Slither was run on the all-scoped contracts. This tool can
statically verify mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the contracts'
APIs across the entire code-base.
Slither results
ShinkaiToken ERC20 analysis

ShinkaiNft ERC721 analysis

ShinkaiNFT.sol

ShinkaiRegistry.sol

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material
changes to the codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential
vulnerabilities introduced by code modifications.

