
Public

SMART CONTRACT AUDIT REPORT

for

Shinkai Protocol

Prepared By: Xiaomi Huang

PeckShield
January 2, 2023

1/16 PeckShield Audit Report #: 2023-280

contact@peckshield.com

Public

Document Properties

Client Shinkai
Title Smart Contract Audit Report
Target Shinkai
Version 1.0
Author Xuxian Jiang
Auditors Colin Zhong, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 January 2, 2023 Xuxian Jiang Final Release
1.0-rc1 December 5, 2023 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/16 PeckShield Audit Report #: 2023-280

Public

Contents

1 Introduction 4
1.1 About Shinkai . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved claimIdentityBatched() Logic in ShinkaiRegistry 11
3.2 Revisited _setRecord() Logic in ShinkaiRegistry . 12
3.3 Trust Issue of Admin Keys . 13

4 Conclusion 15

References 16

3/16 PeckShield Audit Report #: 2023-280

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Shinkai protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the audited protocol can be further improved due to the
presence of several issues related to either security or performance. This document outlines our audit
results.

1.1 About Shinkai

Shinkai allows user to register an identity (e.g. nico.shinkai) by staking certain amount of SHIN

tokens. The required stake amount is computed proportionally inverse to the length of identity
name. A user may stake more than what is needed to buy that specific identity, and should be
able to partially withdraw that extra difference without losing the identity. The identity registration
requires submitting an address that will be the owner of the identity. If the user chooses to unstake
SHIN tokens, it may simply lose the ownership of the identity. The basic information of the audited
protocol is as follows:

Table 1.1: Basic Information of Shinkai

Item Description
Name Shinkai
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report January 2, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

4/16 PeckShield Audit Report #: 2023-280

Public

• https://github.com/dcSpark/shinkai-contracts.git (fa9517f)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/dcSpark/shinkai-contracts.git (01c1f58)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/16 PeckShield Audit Report #: 2023-280

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/16 PeckShield Audit Report #: 2023-280

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/16 PeckShield Audit Report #: 2023-280

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/16 PeckShield Audit Report #: 2023-280

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Shinkai implementation. During the first phase
of our audit, we study the smart contract source code and run our in-house static code analyzer
through the codebase. The purpose here is to statically identify known coding bugs, and then
manually verify (reject or confirm) issues reported by our tool. We further manually review business
logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible
pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/16 PeckShield Audit Report #: 2023-280

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 2 low-severity vulnerabilities.

Table 2.1: Key Shinkai Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved claimIdentityBatched() Logic

in ShinkaiRegistry
Business Logic Resolved

PVE-002 Low Revisited _setRecord() Logic in
ShinkaiRegistry

Coding Practices Resolved

PVE-003 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/16 PeckShield Audit Report #: 2023-280

Public

3 | Detailed Results

3.1 Improved claimIdentityBatched() Logic in ShinkaiRegistry

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ShinkaiRegistry

• Category: Time and State [6]

• CWE subcategory: CWE-682 [3]

Description

The Shinkai protocol allows for identity registration by staking required SHIN tokens. While review-
ing the batch logic to claim multiple identities, we notice the implementation can be improved by
validating no duplicate in the given identities.

To elaborate, we show below the code snippet of the claimIdentityBatched() routine, which is
used to claim multiple identities altogether. Each claimed identity will be validated with a helper
_validateClaim(), which will ensure the claimed identity does not have an owner yet. Since the
routine handles a batch of identities, it is possible a new claimed identity may not have an owner
yet, but is also claimed in earlier batched processing. In other words, the routine may be improved
to ensure no duplicate will be allowed in the user input.

138 f unc t i on c l a im I d e n t i t yBa t c h e d (
139 s t r i n g [] c a l l d a t a names ,
140 uint256 [] c a l l d a t a namespaces ,
141 uint256 [] c a l l d a t a stakeAmounts ,
142 address [] c a l l d a t a owners
143) pub l i c {
144 i f (names . l ength != namespaces . l ength names . l ength != stakeAmounts . l ength

names . l ength != owners . l ength) {
145 r e ve r t I npu tAr i t yMi smatch () ;
146 }
147 uint256 s t a r tTok en I d = s h i n k a i N f t . nextToken Id () ;
148 address prevOwner = owners [0] ;
149 uint256 nftTokensToMint = 0 ;

11/16 PeckShield Audit Report #: 2023-280

Public

150 uint256 to ta lPayment ;
151 _updateRewardsState () ;
152 f o r (uint256 i = 0 ; i < names . l ength ; i++) {
153 i f (owners [i] != prevOwner) {
154 s h i n k a i N f t . mint (prevOwner , nftTokensToMint) ;
155 nftTokensToMint = 1 ;
156 prevOwner = owners [i] ;
157 } e l s e {
158 nftTokensToMint++;
159 }
160 i f (i == names . l ength − 1) {
161 s h i n k a i N f t . mint (prevOwner , nftTokensToMint) ;
162 }
163
164 (s t r i n g memory i d e n t i t y , uint256 payment) = _va l i da t eC l a im (names [i] ,

namespaces [i] , stakeAmounts [i]) ;
165 to ta lPayment += payment ;
166 i d e n t i t y R e c o r d s [i d e n t i t y] . s takedTokens = payment ;
167 emit StakeUpdate (i d e n t i t y , payment) ;
168 _setBoundNft (i d e n t i t y , s t a r tToken I d + i) ;
169 uint256 r ewa r d sS t a t e I n d e x = uint256 (r ewa rd sS t a t e . i nd e x) ;
170 i d e n t i t y S t a k i n g I n d e x [i d e n t i t y] = r ewa r d sS t a t e I n d e x ;
171 i d e n t i t yD e l e g a t i o n I n d e x [i d e n t i t y] = r ewa r d sS t a t e I n d e x ;
172 }
173 sh inToken . t r an s f e rF r om (msg . sender , address (t h i s) , to ta lPayment) ;
174 }

Listing 3.1: ShinkaiRegistry :: claimIdentityBatched ()

In addition, the above routine may be improved by relocating the following statement uint256

rewardsStateIndex = uint256(rewardsState.index); (line 169) outside for-loop to avoid repeated stor-
age reads.

Recommendation Revise the above routine to avoid duplicate identity claims.

Status This issue has been fixed in the following PR: 6.

3.2 Revisited _setRecord() Logic in ShinkaiRegistry

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ShinkaiRegistry

• Category: Coding Practices [5]

• CWE subcategory: CWE-563 [2]

12/16 PeckShield Audit Report #: 2023-280

Public

Description

The ShinkaiRegistry contract has a helper routine to allow for the owner to set various records,
including keys and routing addresses. Our analysis on the routine shows the current implementation
can be improved.

To elaborate, we show below the implementation of the related _setRecord routine. We notice
the use of emptyStringHash to reset current identity keys. However, the emptyStringHash is computed
as emptyStringHash = keccak256(bytes(params.encryptionKey)) (line 643), which does not make use
of an empty string for the hash computation.

642 function _setRecord(string memory identity , SetRecordParams calldata params)
internal {

643 bytes32 emptyStringHash = keccak256(bytes(params.encryptionKey));
644 if (
645 keccak256(bytes(params.encryptionKey)) == emptyStringHash
646 && keccak256(bytes(params.signatureKey)) == emptyStringHash
647) {
648 _unsetKeys(identity);
649 } else {
650 _setKeys(identity , params.encryptionKey , params.signatureKey);
651 }
652 if (params.addressOrProxyNodes.length == 0) {
653 _unsetaddressOrProxyNodes(identity);
654 } else {
655 if (params.routing) {
656 _setProxyNodes(identity , params.addressOrProxyNodes);
657 } else {
658 _setNodeAddress(identity , params.addressOrProxyNodes [0]);
659 }
660 }
661 }

Listing 3.2: ShinkaiRegistry::_setRecord()

Recommendation Revise the above routine to make use of the intended empty string hash
calculation.

Status This issue has been fixed in the following PR: 7.

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: ShinkaiRegistry

• Category: Security Features [4]

• CWE subcategory: CWE-287 [1]

13/16 PeckShield Audit Report #: 2023-280

Public

Description

In the Shinkai protocol, there is a privileged account (owner). This account plays critical roles
in governing and regulating the protocol-wide operations (e.g., configure protocol parameters and
upgrade protocol implementations). Our analysis shows that the privileged account needs to be
scrutinized. In the following, we use the ShinkaiRegistry contract as an example and show the
representative functions potentially affected by the privileged account.

580 function setBaseRewardsRate(uint256 rate) public onlyOwner {
581 if (rate > baseRewardsRateMaxMantissa) {
582 revert InvalidBaseRewardsRate(rate);
583 }
584 _updateRewardsState ();
585 baseRewardsRate = rate;
586 emit BaseRewardsRateUpdate(rate);
587 }

589 function _authorizeUpgrade(address) internal override onlyOwner {}

Listing 3.3: Example Privileged Operations in ShinkaiRegistry

We understand the need of the privileged functions for proper contract operations, but at the same
time the extra power to the privileged accounts may also be a counter-party risk to the contract users.
Therefore, we list this concern as an issue here from the audit perspective and highly recommend
making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Promptly transfer the administrative privileges to the intended DAO-like
governance contract. And activate the normal on-chain community-based governance life-cycle and
ensure the intended trustless nature and high-quality distributed governance.

Status The issue has been mitigated as the team confirmed that all the privileged accounts
will be multi-sig wallets.

14/16 PeckShield Audit Report #: 2023-280

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Shinkai protocol, which allows
user to register an identity (e.g. nico.shinkai) by staking certain amount of SHIN tokens. The required
stake amount is computed proportionally inverse to the length of identity name. A user may stake
more than what is needed to buy that specific identity, and should be able to partially withdraw that
extra difference without losing the identity. The identity registration requires submitting an address
that will be the owner of the identity. If the user chooses to unstake SHIN tokens, it may simply lose
the ownership of the identity. The current code base is well structured and neatly organized. Those
identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

15/16 PeckShield Audit Report #: 2023-280

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

16/16 PeckShield Audit Report #: 2023-280

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Shinkai
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved claimIdentityBatched() Logic in ShinkaiRegistry
	Revisited _setRecord() Logic in ShinkaiRegistry
	Trust Issue of Admin Keys

	Conclusion
	References

