
Shinkai Protocol - Draft
Robert Kornacki Nicolas Arqueros

Abstract—This whitepaper introduces Shinkai, a pio-
neering decentralized data network designed to optimize
and expand the capabilities of Large Language Models
(LLMs) in the AI-driven digital era. Traditional LLMs are
constrained by their static training data, limiting their abil-
ity to access and process dynamically updated information.
Shinkai addresses this critical gap by creating a trustless
network layer that enriches the internet with AI-friendly
embeddings. It incorporates a novel file system tailored for
AI data management, akin to traditional hierarchical file
systems but specifically optimized for efficient storage and
retrieval of embeddings.

Shinkai leverages a decentralized network of nodes,
akin to platforms like Bittorrent, but with a more user-
friendly approach and organized categorization of topics
and websites. This structure allows for seamless and up-
to-date access to a wide array of data sources, enhancing
AI’s ability to provide timely and contextually relevant
responses. A unique aspect of Shinkai is its integration of
a zero-knowledge multiparty computation protocol (MPC),
ensuring the authenticity and accuracy of data and its
embeddings sourced from the web.

Central to Shinkai’s architecture is the Shinkai Node,
pivotal for data management across the network and
enabling AI agents to engage in planning with task schedul-
ing. At its developmental stage, these agents facilitate the
alignment of tasks with user needs, marking an important
step in structured planning for LLMs. With the integration
of PDDL handling, though still in its early stages, sets the
stage for more tailored AI-user interactions, enhancing the
user experience by aligning AI capabilities more closely
with individual requirements.

Shinkai not only addresses the limitations of current AI
tech, but also sets the stage for a more dynamic, responsive,
and interconnected AI ecosystem. This whitepaper details
the design, functionality, and potential applications of
Shinkai, illustrating how it fundamentally transforms the
AI landscape by infusing the internet with a decentralized,
AI-compatible layer of intelligence and data accessibility.

Index Terms—Blockchain, AI, Decentralized Networks,
Large Language Models, Data Embeddings, Zero-
knowledge Proofs, Multiparty Computation (MPC)

I. THE PROBLEM

As we see in the currently-fast moving AI landscape,
LLMs are becoming widely available everywhere in both
local use or via inexpensive cloud services. One would
assume this means that all of our every-day computing
tasks will instantly become drastically improved by AI,
yet this simple premise ignores all of the real complexity
that hides underneath. The challenge lies in the ability of
these LLMs to interact with and process the vast amounts

of data being constantly created. Presently, the internet
caters to human users with UIs and search engine
optimization for bots, but lacks the infrastructure for
efficient AI operations which require vector embeddings
at a minimum.

When discussing AI’s future, the conversation often
veers towards the centralized versus decentralized de-
bate. However, this binary classification is insufficient
because it overlooks the practicality and privacy require-
ments of users.

Decentralized computation has been crucial for trust-
less systems where transactions and interactions need to
be verified without central oversight. For AI however,
the interaction isn’t transactional; it is instead focused on
knowledge processing. This is where the centralization
versus decentralization framework fails to capture the
nuances of AI integration. If personal user data must
be exposed to 100’s of nodes run by unknown parties
to achieve ”decentralization” while offering no tangible
benefits, it becomes quite clear decentralized computa-
tion for AI runs into a dead end.

Rather than either side of this binary being correct,
Personal AI is emerging as the sought-after solution,
where computation for Large Language Models (LLMs)
can be executed locally on personal devices. This local
execution is preferred because it avoids the increased
costs and privacy risks associated with decentralized AI,
which may be beneficial for blockchain applications like
smart contracts and gaming, but typically does not align
with the daily needs of AI users.

As Personal LLM computation becomes more afford-
able due to the rise of open-source models, the focus
shifts to data which is not only unique but also contin-
uously updated. Thus the true value in the AI landscape
is in ongoing access to dynamic and current data, not
merely the static datasets used during initial training
(rather than if the LLMs are running decentralized).

Shinkai is poised to fill this gap, establishing an
off-chain peer-to-peer messaging network that connects
LLMs like ChatGPT with up-to-date knowledge, secure
access to private information, and personal/privacy con-
trols. Existing AI systems often fail to access current
information due to reliance on top search engine results,
which can be outdated (or gamed). Moreover, platforms
like ChatGPT are not configured to perform personal-
ized tasks based on highly sensitive data such as bank



Shinkai Protocol

accounts, crypto access, emails, and medical records, due
to the inherent risks and legal liabilities involved.

Shinkai, on the other hand, seeks to strike the right
balance by connecting LLMs to a decentralized AI
network that offers instant access to the latest data
(embeddings) from the web while being fully connected
to the on-chain world as well. It provides a solution
that runs on users’ computers, granting them full control
over their digital lives without compromising their data
privacy. Shinkai’s approach is made possible by building
a new filesystem for AI embeddings, a decentralized net-
work of nodes providing AI data, and a zero-knowledge
multi-party computation (MPC) protocol to validate data
sources. This ensures that data remains confidential and
under the user’s control while allowing for the expansion
of the AI’s knowledge and skills through subscriptions
to nodes within the Shinkai Network.

Furthermore, Shinkai differentiates itself by not aim-
ing to be a better search engine but in fact an entire
personal system that offers AI the foundation to per-
form and excel in complex tasks. This is possible via
Shinkai’s toolkit system, which enables AI Agents to
interact with the computing stack, such as services, APIs,
web search, submitting blockchain transactions, etc. By
taking lessons from programming theory, Shinkai intro-
duces typed tools with interactive plan generation, un-
locking advanced multi-step capabilities—for instance,
creating a report on the last six months of discussions
with a partner from all Slack, Discord, and email com-
munications.

In essence, Shinkai offers a comprehensive and
private AI system that empowers users to harness
AI for a wide range of real-time applications, tran-
scending the limitations of current AI platforms. It
leverages cryptographic protocols optimized for practical
use, ensuring a secure, efficient, and user-centric AI
experience that aligns with the needs of the modern
digital landscape.

II. SOLUTION: THE SHINKAI PROTOCOL

A. Overview

The Shinkai Protocol is designed to be the solid
foundation for LLM-based AI agents to exponentially
scale their capabilities while having full access to the
most up-to-date data. With a strong emphasis on user
privacy, the extension of AI knowledge, and the expan-
sion of tooling with new primitives, Shinkai provides
the needed infrastructure for AI to seamlessly fit into
our everyday workflows.

A variety of new use cases are possible on top of
Shinkai:

• Real-Time AI Knowledge Updates: Keep AI
agents up-to-date with the latest global develop-
ments across various fields such as world news,

technology, health, and finance thanks to Shinkai’s
decentralized data AI network. This unlocks high
quality responses with the most time-relevant in-
sights and information.

• Content Reformatting: Transform content across
formats effortlessly, from condensing long articles
into summaries, converting videos into text for
quick consumption, or turning text into audio for
on-the-go learning.

• Interactive Web Navigation: Use Shinkai as a
companion for web exploration, enabling users to
ask clarifying questions or save web content directly
into their AI’s knowledge base for future use.

• Personal AI Assistants for All Computing: In-
tegrate AI seamlessly & privately with all of your
personal computers/phones/devices connected. Ev-
erything stays local, ensuring privacy and data se-
curity while supporting all kinds of new workflows.

• Automated Task Management: Schedule and au-
tomate a wide range of tasks, from email man-
agement and deadline tracking to curating custom
summaries from preferred news outlets and digital
content. Better yet, it can all be personalized to user
preferences and delivered at just the right time.

• Secure Information Integration: Privately connect
and manage external data sources such as emails,
slack messages, Google Drive documents, health
data, financial records, and more. This allows for
enhanced personal AI assistance that is both secure
and highly customized to individual needs.

• Crypto Wallet Interaction: Enhance financial
management with AI that can identify optimal APY
opportunities, create price drop alerts, and assist
with crafting actions for crypto transactions, all
while ensuring security through verification and
action requests.

These use cases not only demonstrate Shinkai’s ca-
pacity to move AI integration a generation forward
across various domains, but also highlights the core
principles of user privacy and data security. By enabling
these functionalities, Shinkai sets the stage for a new
era of AI tied directly into personal and professional
spaces, mirroring the efficiency and automation seen in
platforms like Zapier but with a focus on decentralized,
AI-driven solutions.

To make these use cases possible Shinkai unlocks
local execution of AI computation, advanced file parsing
into data embeddings, a custom Retrieval-Augmented
Generation (RAG) pipeline, among many other new
innovations to provide all of the essentials for LLMs
to fit users’ needs. Through RAG Shinkai significantly
improves AI’s understanding and generation of responses
by dynamically retrieving and incorporating relevant
information from a vast set of documents at the time of

2



Shinkai Protocol

Fig. 1. Shinkai Solution

each query. This enables AI to not only rely on its initial
training data but at the same time access and use the
most current information available, ensuring responses
are both accurate and updated.

In the digital world we find ourselves in today, timely
and up-to-date information is essential for AI to actu-
ally be effective. To facilitate this Shinkai introduces a
completely novel AI file system specifically designed
for managing data as embeddings. This system allows
for the efficient storage and retrieval of information at
scale, enabling AI to broaden its knowledge beyond
static data sets. Furthermore, by seamlessly integrating
with Shinkai’s decentralized p2p network, AI agents
have immediate access to the latest data, significantly
enhancing their capability to provide relevant and prompt
responses.

Going past access to data and focusing on AI perform-
ing complex tasks, an additional foundational component
of Shinkai’s architecture is its containerized tooling
system. This innovative system not only simplifies the
deployment of AI use cases (by solving dependency
conflicts entirely) but also incorporates a novel model
of planning and execution which will encompass a wide
array of tasks users perform in their every-day-lives.
Furthermore by leveraging the open-source community,
Shinkai consistently evolves and upgrades its capabil-
ities via new tooling. By developing a strategic type
system for tools together with interactive plan genera-
tion, Shinkai empowers AI agents to effectively manage
complex tasks involving multiple steps with interactions
across the computing stack, including services, APIs,
code execution, interacting with blockchains, and more.
This architecture markedly advances classical LLM’s
capabilities and scope.

B. Core Components and Functionality

The Shinkai Protocol contains several core compo-
nents that underpin its innovative approach:

1) Shinkai Node: The Shinkai Node represents the
personal gateway for users within the network. These
nodes serve as both consumers and providers of data,
contributing to a decentralized environment where col-
lective AI intelligence is continuously enhanced through
shared data and resources.

2) Decentralized Network: Central to Shinkai’s in-
frastructure is its decentralized p2p network, which fa-
cilitates real-time sharing of AI data (ie. embeddings
extracted from latest web content) and enabling AI
agents to message each other. This network is supported
by a bespoke file system optimized for AI data, ensuring
both efficiency in data handling and scalability across the
ecosystem.

3) Vector File System: At the foundation of Shinkai’s
data management capabilities is a vector file system
specifically designed for AI embeddings. This system
enables efficient and scalable storage, retrieval, and man-
agement of AI data across the entire network, facilitating
seamless access to and integration of extensive data sets,
while ensuring full privacy for user data.

4) Advanced RAG for Dynamic Data Access: Shinkai
leverages advanced Retrieval-Augmented Generation
(RAG) techniques to dynamically access and integrate
the most up-to-date data with AI. This ensures that AI
agents can provide responses that are not only accurate
but includes online data streams which are constantly
updating (ie. Social media, news, blockchains, etc.)

5) Containerized Tooling System: The introduction of
a typed containerized tooling system addresses many of
the common challenges deploying AI in production, such
as dependency conflicts which enables streamlining the
deployment of AI into every day use. This flexible typed
framework supports the scheduling and execution of a
broad spectrum of tasks, strengthened by the protocol’s
adaptability and expansion through constantly updated
open-source toolkits that push the capabilities further and
further.

6) Zero-Knowledge MPC Data Protocol: Through the
use of zero-knowledge proofs in an Multi-Party Compu-
tation protocol, authenticity of data provided to AI can be
assured without compromising privacy. This allows users
to have a higher degree of trust in the responses their AI
provide, first from a data sourcing point of view, which
then naturally leads to a decreased rate of hallucinations
with a large corpus of data available.

7) Crypto Integration: Shinkai’s implementation en-
ables AI to intelligently interact with crypto wallets &
the on-chain world with a secure and robust interface.
With capabilities such as hooking into multi-sig wallets,
interacting with on-chain DAOs, and seamlessly integrat-

3



Shinkai Protocol

ing with up-to-date AI data, crypto use cases have a new
opportunity going forward in the AI era.

8) Zero-Knowledge Computational Proofs: While the
focus in Shinkai is on data, connecting verification to
computation/inferencing of LLM models will eventually
unlock true end-to-end assurance. The Shinkai node
itself is written in Rust, and by leveraging solutions like
the Succinct Processor 1 (SP1) [1] for proof generation,
full fledged ZK proofs can be created for many opera-
tions a Shinkai node performs locally. It is expected that
performance will continue to improve substantially.

III. SHINKAI NODE

The Shinkai Node is a sophisticated system written in
Rust which is designed to facilitate a wide range of foun-
dational functionalities. These include among others, AI
agents, jobs, advanced plan generation execution, an AI
file system, and a full fledged decentralized p2p network.
As an open ecosystem, a user can simply get started by
signing up via a SaaS hosting provider, or easily install
the node themselves locally like any other application
on their computer.

Below is a brief technical overview of the Shinkai
node and its main responsibilities:

1) Agent Management: Orchestrates multiple AI
agents for diverse tasks and roles, enabling user
or agent-requested jobs.

2) Job Handling: Manages tasks or goals through
user interactions or document processing.

3) Networking: Supports P2P connections with mes-
sage routing, connection management, and peer
discovery for efficient communication.

4) Concurrency and Task Management: Utilizes
async tasks and threading for efficient, concurrent
operations.

5) Security and Encryption: Ensures data integrity
and unauthorized access protection through end-to-
end encrypted communications and authentication.

6) Scalability and Reliability: Implements retry
mechanisms to support message delivery relia-
bility, and integrates merkelization among other
mechanisms to enable network scaling to large
numbers.

7) Payments: Facilitates transactions, including
credit card and cryptocurrency payments, to allow
AI Agents to integrate into both the Web2 and
Web3 worlds.

8) Blockchain Backed Decentralization: Enhances
security and trust with blockchain-based decentral-
ized identities.

9) Planning: Features task scheduling and advanced
plan generation/execution for performing every
day needs of users.

10) Vector File System: Employs a novel technology,
the Vector File System, for efficient management
of data embeddings, significantly enhanced search-
ability of information, and underpinning the data
network as a whole.

11) Testing and Error Handling: Incorporates a
comprehensive testing suite and structured error
handling for robustness.

Designed for scalability, security, and efficiency, the
Shinkai Node lays as the foundation which unlocks the
plethora of untapped AI use cases.

IV. ZERO-KNOWLEDGE MPC (ON DEMAND) DATA
PROTOCOL FOR SHINKAI

On top of unlocking new use cases, one of Shinkai’s
goals is to enable the decentralization of AI data embed-
dings through providing data assurance. The Shinkai
Network will employ a zero-knowledge multi-party
computation (zk-MPC) protocol to ensure authentic-
ity of data embeddings, thereby requiring no cen-
tralized intermediaries. This protocol will take great
inspiration from the existing TLSNotary protocol [2],
while adding several advancements on top specific to
our AI network use case. The zk-MPC protocol is
crafted to ensure the integrity and authenticity of AI
embeddings’ provenance, providing privacy-preserving
verification which does not compromise any sensitive
data (such as login credentials or financial numbers).

The verification process is designed to be flexible,
allowing for both privacy and customizable levels of
assurance depending on how high-value the data is
deemed to be. This choice directly impacts the initial
cost of creation, which will be primarily mitigated
through providers setting higher delegation requirements
for users on the Shinkai Network (more info about this
in following sections) or optionally through direct pay-
ments/subscriptions on-chain. This ensures that Shinkai
personal nodes can authenticate the data origin with
confidence, upholding the network’s decentralized nature
and ensuring that all data used by AI is reliable.

TABLE I
COMPARISON OF DATA EMBEDDINGS VALIDATION OPTIONS

SUPPORTED BY SHINKAI

Protocol Data Assur-
ance

Cost (Time +
Computation)

zk MPC On Demand +
Full Validation

Very High Very High

zk MPC On Demand +
Embedding Sampling

Medium Medium

zk MPC + Multisig No-
tary Proof by Multisig1

Medium Medium

Just Trust Me Bro / Pinky
Swear

Very Low Ineligible

1 The trust level can vary depending on the number and credibility
of the notaries.

4



Shinkai Protocol

A. Base (TLSNotary (zk + MPC))

Creating proofs of data authenticity and integrity from
TLS-secured websites is complex due to symmetric key
encryption used after the TLS handshake. This encryp-
tion ensures secure communication by using a shared
key for both encryption and decryption, but it prevents
the creation of independently verifiable proofs without
exposing the key, compromising data security.

In the realm of cryptographic advancements for se-
curing data integrity and privacy, PADO [3] and DECO
[4] stand out. PADO employs a ”garble-then-prove”
technique aimed at creating on-chain proofs for data au-
thentication over TLS, offering robust security at the cost
of increased complexity. Conversely, DECO leverages
zero-knowledge proofs to facilitate privacy-preserving
data retrieval, validating data authenticity without reveal-
ing sensitive information. However, both technologies
present integration challenges within Shinkai. The
complexity and on-chain focus of PADO surpass the re-
quirements for Shinkai’s more streamlined, off-chain
proof approach. Meanwhile, DECO, despite its innova-
tion, is hindered by its closed-source nature and their
approach does not appear highly performant [3]. These
factors contribute to Shinkai’s decision to utilize
TLSNotary, enhanced with Multi-Party Computation
(MPC) and cryptographic commitments, to efficiently
safeguard data integrity and privacy without the limi-
tations of PADO and DECO.

TLSNotary addresses this by introducing a third-party
auditor in the handshake process, utilizing Multi-Party
Computation (MPC) and cryptographic commitments.
This allows the Notary to verify data’s integrity and
origin without accessing the actual data or encryption
keys, enabling the creation of verifiable proofs without
sacrificing privacy.

For a detailed understanding of TLSNotary, includ-
ing its mechanisms and integration with protocols like
Shinkai, see Appendix A. This section offers an in-
depth look at TLSNotary’s role in secure and private
data verification. Shinkai extends this protocol to make
it work with embeddings (AI data).

B. zk MPC On Demand + Full Validation

For users seeking complete assurance of embeddings’
provenance, Shinkai Nodes offer a full validation op-
tion. This process employs TLSNotary to validate data
provenance, subsequently enabling direct validation of
the embeddings created.

C. zk MPC On Demand + Full Validation for Derivative
Work

In the future Shinkai Nodes will also wish to share
embeddings of derivative works from websites, some
with original content potentially locked behind sharing

Fig. 2. zk MPC Full Validation

restrictions. Utilizing a decentralized LLM that generates
a zk-proof of computation, a Node could distribute a
summary of restricted content under fair use alongside a
zk-proof. The zk-MPC protocol would thus validate the
pieces of the original content which were used as inputs
for the new derivative summary.

This framework supports amalgamating content from
multiple restricted sources, allowing a zk-compatible
LLM to produce a comprehensive overview/analysis.
This overview, paired with zk-MPC proof, affirms the
source of the original content of all used sources.

D. zk MPC + Multisig Notary Proof my Multisig

Optimizing the zk-MPC on Demand process for reuse
among multiple users begins to resemble the function-
ality of on-chain oracles, like Chainlink. This method
employs a set of known notaries who on top of the
base zk-MPC protocol, review and sign the generated
data embeddings (signing their hash). The Shinkai Node
providing the embeddings also shares these notary sig-
natures with users, who can confirm the notaries’ au-
thenticity by verifying their public signing keys on-chain
through the on-chain Shinkai Registry.

5



Shinkai Protocol

E. Just Trust Me Bro / Pinky Swear

All methods have trade-offs concerning computation
and verification costs, as well as the time required for
production and verification. Shinkai Nodes offer AI data
provenance validation services, which often may incur
additional costs (either direct payment or through dele-
gation). Some users may choose a less expensive option
based on reputation, where data embeddings are offered
at a lower delegation rate or even for free, promoting
other paid data subscriptions for higher assurance.

V. SHINKAI VECTOR FILE SYSTEM

The Shinkai Vector File System, is a novel user-space
file system tailored specifically for AI data management.
Unlike traditional OS-level file systems, it is instead
optimized for robust storage and retrieval of data directly
tied to their embeddings (which are high-dimensional
vector representations of the data). This is crucial for AI
applications as it enhances the overall capabilities of AI
while seamlessly integrating into the Shinkai Network to
unlock a scalable web-of-knowledge for all AI to take
advantage of (fully permissioned & privacy-respecting).

A. Advantages of A Vector File System Over A Vector
Database

Unlike existing Vector Databases (which current gen-
eration AI projects use), the VectorFS is designed to fit
into the modern computing/web stack naturally, allowing
deep composability, resusability, and thus converting
much of the existing internet into data embeddings. The
advantages of the VectorFS include:

• Hierarchical Organization: The VectorFS em-
ploys a hierarchical structure that mirrors real-
world data relationships, unlike flat data models in
databases.

• Granular Access Control: Provides detailed access
controls at various levels, enhancing security and
allowing teams/companies to work internally &
collaborate externally as well.

• Data Integrity and Security: Utilizes Merkle trees
for secure integrity checks, facilitating quick veri-
fication and tamper detection.

• Optimized For Quality: Features specialized in-
dexing and search architecture optimized for return-
ing quality vector search results.

• Domain-Specific Customization: Can be tailored
with domain-specific optimizations or using mul-
tiple customized embedding models, enhancing
search quality.

• Optional Auditability and Compliance Support:
Supports comprehensive access logs, allowing op-
tional support for use cases with high compliance
and data governance standards.

• Distributed Computing Compatibility: Built for
distributed environments, unlocking data consis-
tency across multiple nodes or clusters.

B. Vector File System Path Model

At the heart of the Vector File System is a hierarchical
structure based on paths, where root ‘/‘ represents the
root directory. This structure allows for an intuitive
organization of data, mirroring the familiar file system
hierarchy found in operating systems.

Every non-root path contains a file system entry,
which can be either a folder or an item:

• Folders: These are directory-like structures that can
exist at any depth within the VectorFS, starting
from the root. A folder can contain other folders
(subdirectories) and items (files), allowing for a
nested, tree-like organization of data. Folders in
VectorFS are not just simple containers; they also
hold metadata such as creation, modification, and
access times, providing a rich context for the data
they contain.

• Items: Representing the ”files” within the VectorFS,
items are containers for a single data embedding
file (Vector Resource) + an optional set of source
documents the embeddings were created from (pdfs,
docs, txts, etc). Items enable the VectorFS to tie
original file formats with their data embedding
representations, enhancing the system’s utility for
a wide range of applications.

C. Data Storage in VectorFS

Items in the VectorFS store a broad range of infor-
mation to enable both high quality vector search results,
and seamless integration into countless use cases:

• Top-level Vector Embedding: Stores high-
dimensional vector embedding that acts as a
summary for the whole Vector Resource/internal
data embeddings inside. Improves VectorFS-wise
searches.

• Internal Node Vector Embeddings: Vector Em-
beddings which map onto the pieces of actual con-
tent, which are used by the AI Agents themselves.

• Metadata Index: Stores common info such as
page numbers or other use case specific metadata
internally, while having a top-level index to allow
for extremely efficient metadata searching across
the VectorFS.

• Permissions: Contains advanced read/write per-
missions with whitelisting support which connects
directly into Shinkai’s decentralized p2p network.
Unlocks pay-to-access content via crypto as well.

• Timestamps: Holds various timestamps that pro-
vide a high degree of transparency whenever items
are updated, mutated, moved, or read. Useful for

6



Shinkai Protocol

syncing data across the network, and connecting to
external applications.

• Merkle Hashes: Utilizes Merkle hashes for data
integrity verification.

D. VectorFS As A Merkle Tree

Merkle hashes serve to cryptographically fingerprint
large data structures, allowing swift integrity verification.
They are often used in blockchain contexts as a great
primitive that underpin the trustworthiness of data.

Thanks to it’s hierarchical nature the VectorFS imple-
ments full merkelization, where every folder and item
stored has its own merkle root. This acts as an extremely
pivotal benefit in the world of decentralized AI data. All
p2p syncing and data exchange protocols can take
advantage of the fact the entire VectorFS itself can be
represented as a Merkle tree, allowing for numerous
scaling and distribution optimizations to be made.

Unlike classical VectorDBs which cannot support this
functionality, the VectorFS is built from the ground up
to shine in the decentralized AI Era.

VI. DECENTRALIZED SHINKAI IDENTITIES AND
THEIR SMART CONTRACT

The Shinkai Network integrates directly into
blockchain to implement a decentralized and censorship-
resistant system for Shinkai identities. Storing public
node data on-chain ensures that Shinkai nodes within the
ecosystem can effortlessly discover and communicate
with each other. The decentralized Identity Registry
smart contracts are central to Shinkai, enabling secure
and autonomous interactions for managing identities
with no middleman required.

A. Shinkai Identities

As mentioned above, at the core of the Shinkai
Network is the concept of Shinkai Identities. These
identities serve as unique ”names” for users/nodes on
the network, akin to a domain name, but with broader
functionalities. By staking Shinkai tokens, with the
amount required inversely proportional to the length of
the identity name, users can register an identity on-
chain (ex. @@alice.shinkai). This inversely proportional
relationship ensures that shorter (desirable) names are
harder to acquire, thereby preventing name squatting
while encouraging the efficient use of the whole names-
pace.

B. Key Features of Shinkai Identities

• Decentralized Identity Registration: Identities (as
NFTs) are registered/created by staking Shinkai
tokens, with the amount required inversely propor-
tional to the name’s length, prioritizing the efficient
use of the namespace.

• Ownership and Transferability: Registered iden-
tities are owned and held in a user’s wallet as an
NFT, with the capability to transfer ownership of
the identity (and thus associated stake) to other
addresses.

• Connects With The Shinkai Node: Your identity
connects directly with your Shinkai node, allowing
all messages, files, or anything else anyone (or any
AI Agent) sends to you to seamlessly arrive at your
node.

• Dynamic Management: Owners can adjust their
stake, withdraw excess tokens without forfeiting the
identity, and fully unstake to relinquish ownership
(thereby burning the NFT).

• Infinite Sub-identities: Underneath a single
Shinkai identity, an infinite number of sub-identities
can be created for all devices/computers/AI agents
that the user owns.

• Router/Proxy Nodes: By specifying one or more
router/proxy nodes the network supports further
scalability, enhanced message delivery assurance,
and privacy.

• Batch Operations: Facilitates the management of
multiple identities through batch registration, trans-
fer, and unstaking processes.

C. Sub-identities For Integration With User Devices

Sub-identities enhance the Shinkai Network’s flexibil-
ity, allowing intricate management of devices, agents,
and various functionalities within the Node. In fact they
even allow multiple distinct people (ie. friends/family) to
have their own sub-identities which map onto different
profiles in the Shinkai node.

This design supports advanced access controls while
enabling AI Agents to have their own sub-identities as
well (unlocking the ability to p2p message each other).
Here are examples of sub-identities on Shinkai:

• @@Alice.shinkai/profileName – a user
profile within the network.

• @@Alice.shinkai/profileName/agent/
myChatGPTAgent – an AI agent, linked to the
user’s profile.

• @@Alice.shinkai/profileName/device
/myPhone – a specific device like a smartphone,
associated with the user’s profile.

The Shinkai naming convention follows a standard of:
@@baseIdentity/profileName/subidentity
Type/subidentityName, where:

• baseIdentity is the user’s Shinkai identity as-
signed on-chain in the Registry.

• profileName specifies a user-created profile.
• subidentityType categorizes the sub-identity

as either an agent or a device.

7



Shinkai Protocol

• subidentityName provides a unique identifier
for the sub-identity.

This sub-identity model allows a Shinkai node to
scale across countless use cases. Whether a user will
have 50 devices connected in an IoT cloud, 150 AI
agents running in parallel communicating with each
other/other agents, or 12 friends/family members
each with their own profile, Shinkai is designed to
support all of such use cases seamlessly.

D. Routing Nodes and Network Resilience

Routing nodes offer a strategic solution to the chal-
lenges often faced with direct P2P connections. These
nodes allow users looking for enhanced privacy (hiding
the public IP of their node) or ease of use via tunneling
through restrictive firewalls while also ensuring consis-
tent message delivery across the network (backed by end-
to-end encryption).

Furthermore, nodes with extremely high demand may
utilize multiple routing-nodes as balance loaders to en-
sure high connectivity even under serious traffic. All to-
gether, routing nodes offer an on-network native solution
to overcome classical P2P issues.

E. Shinkai’s On-Chain Identity Registry and Delegation
Mechanism

Shinkai’s on-chain Identity Registry supports all core
capabilities for managing and operating Shinkai Identi-
ties in a fully decentralized manner. Each identity lives
on-chain and contains information about:

• Staked Tokens: Reflects the Shinkai tokens staked
underneath the identity. Each identity’s staked to-
kens are distinct, ensuring isolated management and
facilitating specific actions like partial withdrawals
or stake increases without affecting other identities.

• Node Addresses/Proxy Nodes: Critical for the net-
work’s decentralized infrastructure, allowing identi-
ties to specify direct node addresses or utilize proxy
nodes for enhanced connectivity and privacy.

• Encryption and Signature Keys: Underpinning
secure communications across the network, these
keys ensure nodes can decrypt and validate who
they are sending/receiving messages from.

• Tokens Delegated: The amount of Shinkai tokens
the identity has delegated to others.

• Incoming Delegations: The amount of Shinkai
tokens other identities on the network are delegating
to the identity.

• Records HashMap: Provides a flexible datastore
for adding additional information related to an
identity, enabling data attestation and extensibility
for other protocols.

The delegation of tokens is a cornerstone of
Shinkai’s economy, enabling identities to support other

nodes/service providers on the network with no added
personal cost.

F. Shinkai’s On-Chain Architecture

As mentioned in the previous section, Shinkai’s on-
chain architecture underpins the ecosystem, enabling a
range of operations from identity registration to stake
management and token delegation. The system is de-
signed with upgradability in mind, ensuring the network
can adapt and evolve over time. Key components of the
on-chain architecture:

• ShinkaiRegistry: The central hub which allows for
managing identities, staking, delegation, and node
information.

• ShinkaiToken: Facilitates staking and delegation,
enabling Shinkai’s identity namespace to function.

• ShinkaiNFT: Represents registered digital identi-
ties as unique NFTs, providing a tangible asset for
ownership and transferability within the ecosystem.

This on-chain architecture provides a robust frame-
work for decentralized identity management, empow-
ering users with control, security, and flexibility. Ad-
ditionally, it is not merely limited to Ethereum but
will extend to other ecosystems and Layer 2 solutions
ensuring future-readiness no matter what chains end up
dominating the crypto landscape going forward.

VII. NETWORKING AND THE SHINKAI MESSAGE

For many projects networking and messaging details
may just be a footnote. However for Shinkai, with
multiple systems interacting with the Node, it’s crucial to
explain the core mechanics at play that the Node interacts
with and supports.

• Node-to-Node Communication: Utilizes TCP for
the transmission of ShinkaiMessage as the
core primitive. Also supports sharing an AES-GCM
symmetric key as a session key for direct file
transfers.

• Node API Communication: Implements REST
APIs that leverage ShinkaiMessage, with
strong security through encryption and message
signing which guarantees Shinkai identity verifiabil-
ity. Nodes and clients must synchronize their clocks
to prevent the rejection of old messages. To avoid
message replay, the Node records the hash of each
message, ensuring they cannot be reused. Addition-
ally, clients can share an AES-GCM symmetric key
within an encrypted ShinkaiMessage for easier
file uploads. WebSocket (WS) connections, secured
with AES-GCM, facilitate real-time updates be-
tween Nodes and Clients.

8



Shinkai Protocol

A. ShinkaiMessage Structure

A ShinkaiMessage is a complex structure de-
signed to facilitate secure and versatile communication
and data transfer within the Shinkai ecosystem. It is com-
prised of several components, each tailored to specific
aspects of message handling, encryption, and metadata
management.

1) Body (MessageBody): The MessageBody car-
ries the actual content of the message, supporting en-
crypted and unencrypted data:

• Encrypted (EncryptedShinkaiBody): Uses
ChaCha20Poly1305 for data encryption, ensuring
secure transmission. This is the global default used
for Shinkai Messages ensuring privacy for all com-
munications.

• Unencrypted (ShinkaiBody): Directly includes
the message data (MessageData) and internal
metadata (InternalMetadata). This is only
suitable for specific use cases that require extremely
high throughput of non-sensitive information. This
is an optional setting available, not used by the
network by default.

2) External Metadata (ExternalMetadata): En-
capsulates essential delivery and verification informa-
tion:

• Sender and Recipient: Shinkai identities of the
message originator and target recipient.

• Scheduled Time: Timestamp for when the message
is to be sent/processed.

• Signatures: Utilizes the Ed25519 algorithm for
signing, thereby verifying the message’s authentic-
ity and integrity.

• Additional Fields: Allows for custom use cases or
internal processing needs.

3) Encryption (EncryptionMethod): Details
the encryption used for the message. Currently
supports (x25519 dalek) for key exchange and
ChaCha20Poly1305 for encrypting message content.

4) Version (ShinkaiVersion): Indicates
the ShinkaiMessage format version, ensuring
compatibility and facilitating a clean upgrade-path for
the future.

Note: The keys used for encryption and signing within
the ShinkaiMessage are distinct, enhancing security
by keeping the encryption of message content fully
separate from the verification of message authenticity.

Each component of the ShinkaiMessage plays
a crucial role in securely transferring data within the
Shinkai ecosystem by leveraging state-of-the-art cryp-
tography for both signing and encryption.

B. Lifecycle and Example of ShinkaiMessage Communi-
cation

Let’s take a look at the process of sending a message
between two users, Alice and Bob, on the Shinkai
network. Alice wishes to send the message ”Welcome
to Shinkai!” to Bob. This involves several steps & in-
teractions including with Alice’s device, Alice’s Shinkai
Node, the Blockchain, Bob’s device, and Bob’s Shinkai
Node.

1) Identity and Key Discovery: Alice retrieves
Bob’s Node information (IP, port, or router/proxy)
and public encryption keys from the Identity
Registry on the blockchain (using Bob’s identity
@@bob.shinkai), and queries Bob’s Node for his
device’s keys as well.

2) Message Preparation: Alice crafts a ShinkaiMes-
sage with an inner layer targeting Bob’s device and
an outer layer for Alice’s Node. The inner layer
can be decrypted with Bob’s device encryption
key, while the outer layer via Alice’s Node encryp-
tion key, following a Diffie-Hellman key exchange.

3) Signing and Sending: Alice’s device signs both
the inner and outer layers of the message to
confirm its authenticity and sends it to her Shinkai
Node.

4) Node Processing (Alice’s Side): Alice’s Node
decrypts the outer layer and verifies Alice’s sig-
nature. It then uses Bob’s Node information from
the blockchain to re-encrypt the outer part of the
message, but now targeting Bob’s Node. This re-
encryption ensures a high level of privacy and
limited data leakage.

5) Transmission to Bob’s Node: The message is sent
over the network from Alice’s Shinkai Node to
Bob’s Shinkai Node.

6) Node Processing (Bob’s Side): Bob’s Node
decrypts the outer message, verifies the signa-
ture against Alice’s Node information on the
blockchain, and securely stores the message for
Bob to read from one of his devices.

7) Delivery to Bob: When Bob connects to his Node,
the message is delivered to his device, and the
inner message is finally fully decrypted and read.
This provides end-to-end encryption, and allows
for private communication to be possible between
users even when using 3rd party hosting providers
for the Shinkai Node.

This process is visually depicted in Fig. 1, ”Overview
of Networking Flow on Shinkai”, illustrating the secure
and efficient messaging that Shinkai nodes perform.

VIII. PLANNING, REASONING, AND TOOLKITS

In the realm of artificial intelligence, the process
of making plans and logical deductions using Large

9



Shinkai Protocol

Fig. 3. Overview of Networking Flow on Shinkai

Language Models (LLMs) has revealed a large swath
of complexity which LLMs cannot solve by themselves
today. This complexity arises from the vast compu-
tational and architectural challenges intrinsic to these
tasks. As the number of variables in a given problem
grows, so does the difficulty of creating and verifying
a plan, leading to a classification known as PSPACE-
complete. The unpredictability of task execution in real-
world scenarios further adds to this complexity, often
resulting in issues akin to those encountered in stochastic
planning where outcomes are uncertain.
This pivotal dilemma in AI agent automation, high-
lighted in the interview with Subbarao Kambhampati
titled ”Planning, Reasoning, and Interpretability in the
Age of LLMs” [5], revolves around whether to limit focus
to problems with tractable computational complexity or
to embrace the full spectrum of problems, striving for
the best possible solutions without guarantees. This has
historically divided the AI community into ”neat AI”,
focusing on tractable logic to avoid prohibitive inference
costs, and ”scruffy AI”, which accepts the challenges of
complexity and intractability.
The limitations of Large Language Models (LLMs)
become apparent in planning and reasoning due to their
reliance on approximate retrieval & responses rather
than genuine reasoning, thereby necessitating external
verification to ensure plan correctness. This underscores
the significance of a more nuanced approach towards AI

planning, advocating for a balance between embracing
complexity and striving for computational efficiency.

A. Path Forward

To address these challenges, a promising solution
is available involving a hybrid approach that utilizes
Large Language Models (LLMs) for generating initial
ideas, complemented by external validation to refine
and confirm the accuracy of these plans. This method
employs a process known as iterative refinement or ”back
prompting” together with typed tools, which together
systematically improve the quality and practicability of
plans created by LLMs. In this process, LLMs generate
preliminary plans that first pass through type validation,
and then are reviewed by external verifiers. Based on
feedback, LLMs receive new prompts that incorporate
the needed changes specified, enabling them to adjust
and improve their initial plans. This cycle of generation,
feedback, and refinement continues until a satisfactory
plan is achieved, ensuring that the final output is both
feasible and of high quality.

This path forward, as initially touched upon in the
paper ”LLMs Can’t Plan, But Can Help Planning in
LLM-Modulo Frameworks” [6], focuses on a pragmatic
use of LLMs to address the AI planning problem. By
emphasizing a collaborative synergy between machine
static analysis, external verifiers, and the innovative ca-
pacity of LLMs, we are able to create a robust, adaptable,

10



Shinkai Protocol

and efficient framework for tackling complex planning
and reasoning tasks in AI.

IX. SHINKAI TOOLKIT SYSTEM

A. Overview

To overcome the previous listed challenges in AI
planning and execution, Shinkai offers a streamlined
framework for the creation, management, and deploy-
ment of specialized toolkits. These toolkits, designed for
LLM Agents, enable a broad range of functionalities,
including code execution, data fetching, API calling, and
file management, thereby expanding the capabilities of
Large Language Models (LLMs) beyond their inherent
limitations.

At the core of the toolkit system are the following set
of work streams which are moving forward in parallel:

1) Containerized Tooling: Shinkai implements tool
encapsulation to eliminate dependency conflicts
and enhance security, allowing AI agents to ef-
ficiently perform a broader array of tasks. This
modular and isolated environment ensures tools are
portable and adaptable, unlocking rapid ecosystem
development and deployment for AI-driven appli-
cations.

2) Synthetic Data Generation: A new workflow is
being built to generate high quality QA of external
tooling usage for LLMs. Unlike existing solutions
that suffer from the normal distribution problem
(too much of certain data and too little of others),
this new workflow addresses the problem by using
a randomness sampling technique. Furthermore,
the QAs are also validated using verifiers in order
to avoid fine-tuning models with low-quality ex-
amples that are lacking. This stream will primarily
focus on crypto tooling like TheGraph to address
the major need of current LLMs lacking training
to properly interact and plan for the crypto world.

3) Types For Tools: In order to use static analysis
to ensure AI generated plans are valid and can be
completed, tools are typed. This approach takes
lessons from the world of programming language
theory to off-load as much validation as possible
from both the LLMs and humans involved, instead
relying on mechanistic verification where possible.

4) Plan Validation & Execution Runtime: LLMs
by themselves cannot validate or execute plans
without a runtime that guides them while per-
forming all plan static analysis, input validation,
retry pathing, and tool execution automatically.
This runtime exists within the Shinkai node and
be the foundation which allows advanced tasks to
be accomplished.

At the heart of the system are two variants of tools:
Embedded Tools, which expose internal/core functional-

ities of the Shinkai node to the AI agent, and External
Tools, which execute code and can perform any task such
as interface with external APIs.

The Embedded Tools are part of the “Shinkai Core
Toolkit,” which is included automatically within every
single Node. This toolkit equips AI Agents with essential
capabilities on the Shinkai Network such as messaging,
file/content vector search, storage,scheduling future ex-
ecution, tool vector search, and more.

External Tools on the other hand are designed to
be modular and extensible, allowing your AI Agents
to continue growing more capable as new toolkits are
installed. Anyone can create their own external toolkits
enabling an ecosystem to develop with countless of use
cases covered for a variety of domains:

• Web Access: Connect to the existing web, allowing
your AI Agent to use services, web apps, and
everything in between.

• Crypto Tooling & Infrastructure: Provide secure
crypto capabilities like issuing transactions, voting
on DAOs, performing trades, comparing APY op-
portunities, and more.

• Financial & Accounting Software: Deal with
the world of traditional finance and hooking
into/streamlining accounting processes.

• Marketing Tools: Offer tools for market analysis,
campaign management, customer engagement, and
more.

• File Storage & Management: Connect to existing
storage providers like Google Drive, allowing your
AI to manage them and unifying all your data
together with the VectorFS.

• CRM (Customer Relationship Management):
Streamline existing CRM processes with directly
hooking in AI Agents with customer docs stored
in the VectorFS available to be used.

• Calendar & Scheduling: Simplify scheduling
and event management across your different
apps/services.

• Computation: Allow your AI Agents to gain new
capabilities like executing code (isolated), perform-
ing mathematical calculations, validating crypto-
graphic signatures/zk proofs, and more.

• Custom Integrations: Enable seamless integration
with any external services and APIs.

With these toolkits users will be able to upgrade the
capabilities of their AI as easily as installing an app on
their phone. Anyone can easily code new toolkits in mere
hours, unlocking novel capabilities for AI Agents.

To enable toolkits to work seamlessly with users’
Shinkai nodes and enable developers to have a stream-
lined experience getting started, the following compo-
nents are being built in the Shinkai ecosystem:

11



Shinkai Protocol

B. Toolkit-Builder

The toolkit-builder is a scaffolding tool that kickstarts
the development of new toolkits by generating a base
project structure. This structure includes a sample tool
and configuration files necessary for building, testing,
and deploying the toolkit. The toolkit-builder simplifies
the initial setup process, allowing developers to quickly
move to the implementation phase.

C. Toolkit-Executor

The toolkit-executor is a versatile component that
facilitates the execution of compiled toolkits. It sup-
ports two modes of operation: a standalone executable
mode for direct command-line execution and a web
server mode that listens for execution requests over the
network. This dual-mode operation enables both local
and remote execution of toolkit functions, providing
flexibility in how toolkits are deployed and utilized.

D. Toolkit-Lib

Toolkit-lib serves as the foundational library for
toolkit development, offering core functionalities and in-
terfaces required by external tools. It includes utilities for
introspection, input validation, and other common tasks,
thereby standardizing the way toolkits are developed and
ensuring consistency across the ecosystem.

E. Toolkit-Registry

The toolkit-registry maintains a comprehensive record
of all available toolkits within the ecosystem, including
their metadata, versions, and tool descriptions. It acts
as a centralized repository that facilitates the discovery
and integration of toolkits into projects. The registry is
automatically updated to reflect the latest changes and
additions to the ecosystem, ensuring that all users have
access to upgrade their AI agents’ capabilities.

X. SHINKAI COMPATIBILITY

A. Node API Design

The goal of Shinkai is to allow every user to securely
and easily connect and use their AI from anywhere.
Whether they want to plug AI into their web browser,
mobile phones, desktop apps, or 3rd party services, all
of these use cases need to work seamlessly.

To support all of these the Shinkai team has
developed multiple libraries in Rust, WASM, Python
(utilizing pyo3), and native Typescript. This diverse
set of targets enables the creation of applications and
integrations across a wide range of platforms including
iOS, Android, Chrome Extensions, desktop applications
and more. Additionally, Shinkai has been integrated into
various services such as Zapier, Replit, Slack, Discord,
among others. This cross-platform approach ensures that
Shinkai can maintain a broad and adaptable presence

across different ecosystems, and allow the open source
developer community to naturally flourish.

B. Enterprise

Enterprises are known for having tailored needs re-
garding specific security, operational, and regulatory
requirements. Most centralized AI solutions require full
disclosure of all data, running into clear conflicts for how
AI should naturally fit into these workflows.

Shinkai’s architecture leverages a strong privacy-
oriented technological foundation that naturally
aligns with the stringent requirements of enterprise
environments (despite not targeting this use case in the
first place). Its low-level implementation of key tech
allows for more customizability and thus fitting into
direct paths for enterprise to take advantage of.

For example, Shinkai’s device and identity manage-
ment capabilities enables fully compartmentalized file
and permissions access that securely scales no matter
how many users are required for a given organization.
Furthermore, this neatly fits into cases where cross-
organization cooperation is required as well, with fine-
tuned access requirements that keeps everything in line.

Flexibility in deployment is another inherent quality
of Shinkai’s technological stack. The platform’s architec-
ture supports on-site deployments, enabling enterprises
to integrate their own security and identity management
systems on top. This adaptability ensures that Shinkai
can be molded to meet the exact standards and bespoke
needs of any enterprise environment.

In essence, Shinkai allows enterprises to take advan-
tage of the latest and greatest innovations in AI, while
molding into their existing technological and regulatory
stack. With Shinkai’s unique blend of security, scalabil-
ity, and interoperability, it offers enterprises a potent tool
for entering into the AI Era.

XI. LONG TERM DEVELOPMENTS

The Shinkai Network lays down the foundation for
a fruitful open-source ecosystem to grow. With strong
fundamentals, there are multiple paths of research and
development that are possible for the ecosystem to take
to continue growing going forward:

1) Embedding LLMs into the Node directly, once
the state-of-art Open Source models reach a suffi-
cient intelligence threshold to not require constant
weekly/monthly updates to keep up

2) Improvements to the zk MPC protocol
3) Updates to better Embedding models with good

trade-offs in speed to generate vs. storage size vs.
quality.

4) Implementation of new capabilities leveraging zk
for services provided by Shinkai nodes

12



Shinkai Protocol

XII. CONCLUSION

In conclusion, the Shinkai Protocol melds crypto-
graphic & networking innovations together within a
single system to address and extend beyond the current
limitations of AI. By establishing a decentralized data
network that infuses the internet with AI-friendly embed-
dings, Shinkai enables LLMs to access and process dy-
namic, up-to-date information. This is further bolstered
by the use of zero-knowledge MPC protocols to pro-
vide data assurance while drastically expanding LLMs’
knowledge in a privacy-preserving manner, setting the
stage for a new paradigm of secure and decentralized
AI.

REFERENCES

[1] “SP1: Performant, Open-Source Zero-Knowledge Virtual Ma-
chine,” https://github.com/succinctlabs/sp1, 2024, documentation
for SP1 users and developers. SP1 is a performant, 100%
open-source, contributor-friendly zero-knowledge virtual ma-
chine (zkVM) that verifies the execution of arbitrary Rust (or any
LLVM-compiled language) programs. License: MIT / Apache
2.0.

[2] TLSNotary, “TLSNotary: Proof of data authenticity,” Public good
and open source project supported by the Ethereum Foundation
under the Privacy and Scaling Exploration Team, n.d., available:
https://tlsnotary.org.

[3] X. Xie, X. Wang, K. Yang, and Y. Yu, “Lightweight authentica-
tion of web data via garble-then-prove,” Preprint, 2023.

[4] F. Zhang, H. Malavai, S. Goldfeder, and A. Juels, “Deco:
Liberating web data using decentralized oracles for tls,” Cornell
Tech, 2023, available: https://arxiv.org/abs/2009.03875.

[5] S. Kambhampati and D. Bashir, “Planning, reasoning, and
interpretability in the age of llm,” The Gradient Podcast, 2024,
episode 110. [Online; accessed 20-February-2024]. [Online].
Available: https://www.youtube.com/watch?v=nwQKuY9 Ky4

[6] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma,
S. Bhambri, L. Saldyt, and A. Murthy, “LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks,” 2024,
arXiv:2402.01817 [cs.AI].

[7] K. Valmeekam, S. Sreedharan, M. Marquez, and S. Kambham-
pati, “On the Planning Abilities of Large Language Models : A
Critical Investigation,” November 2023, school of Computing &
AI, Arizona State University; Department of Computer Science,
Colorado State University.

[8] M. Balduccini, D. Magazzeni, and M. Maratea, “PDDL+ Plan-
ning via Constraint Answer Set Programming,” Presented at the
9th Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP 2016), New York City, USA, 16 October
2016, 2016, arXiv:1609.00030 [cs.AI].

[9] S. G. Patil, T. Zhang, X. Wang, and J. E. Gonzalez, “Gorilla:
Large Language Model Connected with Massive APIs,” 2023,
arXiv:2305.15334 [cs.CL].

[10] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models,” 2022, arXiv:2201.11903
[cs.CL].

[11] P. von Platen, “How to generate text: using different
decoding methods for language generation with Transformers,”
Hugging Face Blog, March 2020, edited on July 2023
with up-to-date references and examples. [Online]. Available:
https://huggingface.co/blog/how-to-generate

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You
Need,” CoRR, vol. abs/1706.03762, 2017, arXiv:1706.03762
[cs.CL]. [Online]. Available: https://arxiv.org/abs/1706.03762

[13] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. 22, no. 6, pp.
644–654, 1976, invited Paper.

[14] D. J. Bernstein, “Chacha, a variant of salsa20,” 2008, available
at https://cr.yp.to/chacha.html.

[15] ——, “The poly1305-aes message-authentication code,” Fast
Software Encryption, vol. 3557, pp. 32–49, 2005.

[16] Y. Nir and A. Langley, “Chacha20 and poly1305 for ietf
protocols,” RFC Editor, RFC 7539, May 2015. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7539.txt

[17] A. Langley, M. Hamburg, and S. Turner, “Chacha20 and
poly1305 for ietf protocols,” RFC Editor, RFC 8439, June 2018.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8439.txt

APPENDIX A
APPENDIX: DETAILED OVERVIEW OF TLSNOTARY

PROTOCOL

The TLSNotary protocol introduces a third-party no-
tary into the TLS handshake process to verify the in-
tegrity and origin of data transmitted over a TLS con-
nection without compromising privacy. This appendix
provides a comprehensive overview of the protocol’s
operational workflow, cryptographic foundations, and
integration with the Shinkai AI Network.

A. Operational Workflow of TLSNotary

1) Initiation: MPC-TLS Phase: The protocol starts
with an MPC phase, where the Prover and Verifier
collaboratively initiate a secure connection to a TLS-
enabled server. This setup ensures that the Verifier ob-
serves only encrypted application data, maintaining the
confidentiality of the exchange.

2) TLS Handshake: The TLS handshake involves
cryptographic operations performed via MPC, resulting
in the computation of session keys. These keys are
generated in a manner that ensures neither the Prover
nor the Verifier has full knowledge, preserving privacy
and security.

3) Data Encryption and Decryption: Data sent to the
server is encrypted using the session key, derived from
both the Prover and Verifier’s inputs, while incoming
data is decrypted in a similar collaborative manner. This
ensures the confidentiality of the transmitted data and
the integrity of received data.

4) Notarization Process and Verification of Data
Provenance: The Prover generates authenticated com-
mitments to the plaintext data, which are signed by a
Notary. This process facilitates the later verification of
the data’s origin and integrity by an application-specific
Verifier, ensuring non-repudiation.

B. Cryptographic Foundations

1) Mathematical Formulations: The protocol’s secu-
rity is underpinned by complex mathematical operations:

13

https://github.com/succinctlabs/sp1
https://tlsnotary.org
https://arxiv.org/abs/2009.03875
https://www.youtube.com/watch?v=nwQKuY9_Ky4
https://huggingface.co/blog/how-to-generate
https://arxiv.org/abs/1706.03762
https://www.rfc-editor.org/rfc/rfc7539.txt
https://www.rfc-editor.org/rfc/rfc8439.txt


Shinkai Protocol

• GHASH Output Computation: Essential for MAC
computation, defined as

GHASH(H,X1, X2, . . . , Xm) =

X1 ·Hm⊕
X2 ·Hm−1⊕
. . .

Xm ·H,

where · and ⊕ represent multiplication and the XOR
operation in the finite field GF (2128), respectively.

• Secure Two-party Computation for MAC: En-
sures that neither party learns the other’s key share,
crucial for maintaining the confidentiality of the
MAC.

2) Ciphertext Block Computation and Commitment
Scheme: The protocol’s approach to ciphertext block
computation and its commitment scheme ensures data
integrity and privacy. These include the conversion of ad-
ditive shares into multiplicative shares and the utilization
of a Merkle tree structure for commitments, enhancing
the security of the data exchange.

C. Integration with Shinkai AI Network and Ensuring
Trustlessness

The integration of the TLSNotary protocol with the
Shinkai AI Network significantly enhances the network’s
capability to maintain the assurance of data embed-
dings. This is pivotal in a decentralized setting where
verifying the authenticity and integrity of data, without
compromising on user privacy, is crucial. By utilizing
cryptographic constructs such as garbled circuits and
oblivious transfer, the TLSNotary protocol provides a
robust framework for secure computations and data
exchanges across the network.

This integration is instrumental in guaranteeing that
data shared through the Shinkai AI Network can be
trusted without requiring centralized validation. The data
assurance afforded by the TLSNotary protocol means
that participants in the network can rely on the integrity
and authenticity of data, facilitating a truly decentralized
ecosystem for AI-driven applications and services. The
protocol ensures that each piece of data exchanged
within the network is accompanied by verifiable proofs,
thus upholding the core principle of decentralization —
eliminating the need for trust in a central authority.

D. Conclusion

The TLSNotary protocol incorporates advanced secu-
rity measures, including the DEAP protocol and finite-
field arithmetic to safeguard against malicious threats
and ensure the robustness of MPC operations.

With the above stated, it becomes quite clear that
through TLSNotary’s protocol design and cryptographic

underpinnings, its role within the Shinkai Network pro-
vides a strong technical foundation for secure data em-
bedding sharing.

14


	The Problem
	Solution: The Shinkai Protocol
	Overview
	Core Components and Functionality
	Shinkai Node
	Decentralized Network
	Vector File System
	Advanced RAG for Dynamic Data Access
	Containerized Tooling System
	Zero-Knowledge MPC Data Protocol
	Crypto Integration
	Zero-Knowledge Computational Proofs


	Shinkai Node
	Zero-knowledge MPC (On Demand) Data Protocol for Shinkai
	Base (TLSNotary (zk + MPC))
	zk MPC On Demand + Full Validation
	zk MPC On Demand + Full Validation for Derivative Work
	zk MPC + Multisig Notary Proof my Multisig
	Just Trust Me Bro / Pinky Swear

	Shinkai Vector File System
	Advantages of A Vector File System Over A Vector Database
	Vector File System Path Model
	Data Storage in VectorFS
	VectorFS As A Merkle Tree

	Decentralized Shinkai Identities and Their Smart Contract
	Shinkai Identities
	Key Features of Shinkai Identities
	Sub-identities For Integration With User Devices
	Routing Nodes and Network Resilience
	Shinkai's On-Chain Identity Registry and Delegation Mechanism
	Shinkai's On-Chain Architecture

	Networking and The Shinkai Message
	ShinkaiMessage Structure
	Body (MessageBody)
	External Metadata (ExternalMetadata)
	Encryption (EncryptionMethod)
	Version (ShinkaiVersion)

	Lifecycle and Example of ShinkaiMessage Communication

	Planning, Reasoning, and Toolkits
	Path Forward

	Shinkai Toolkit System
	Overview
	Toolkit-Builder
	Toolkit-Executor
	Toolkit-Lib
	Toolkit-Registry

	Shinkai Compatibility
	Node API Design
	Enterprise

	Long Term Developments
	Conclusion
	References
	Appendix A: Appendix: Detailed Overview of TLSNotary Protocol
	Operational Workflow of TLSNotary
	Initiation: MPC-TLS Phase
	TLS Handshake
	Data Encryption and Decryption
	Notarization Process and Verification of Data Provenance

	Cryptographic Foundations
	Mathematical Formulations
	Ciphertext Block Computation and Commitment Scheme

	Integration with Shinkai AI Network and Ensuring Trustlessness
	Conclusion


